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Abstract    There are numerous text books on dynamics which devote a few pages to the 
calculation of mass properties.  However, these text books quickly jump from a very brief 
description of these quantities to some general mathematical formulas without giving 
adequate examples or explaining in enough detail how to use these formulas.  The 
purpose of this paper is to provide a detailed procedure for the calculation of mass 
properties for an engineer who is inexperienced in these calculations.  Hopefully this 
paper will also provide a convenient reference for those who are already familiar with 
this subject.  
 
This paper contains a number of specific examples with emphasis on units of 
measurement.  The examples used are rockets and re-entry vehicles.  The paper then 
describes the techniques for combining the mass properties of sub-assemblies to yield the 
composite mass properties of the total vehicle.  Errors due to misalignment of the stages 
of a rocket are evaluated numerically.  Methods for calculating mass property corrections 
are also explained. 
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Calculation of Mass Properties using Traditional Methods 
 
Choosing the Reference Axes 
The first step in calculating mass properties of an object is to assign the location of the 
reference axes.  The center of gravity and the product of inertia of an object can have any 
numerical value or polarity, depending on the choice of axes that are used as a reference 
for the calculation.   Stating that a CG coordinate is "0.050 inches" means nothing unless 
the position of the reference axis is also precisely defined. Any reference axes may be 
chosen.   For example, the center of gravity of a cylinder may be 4.050 inches from one 
end, 0.050 inches from its midpoint, and 3.950 inches from the other end.  Furthermore, 
each end of the cylinder may not be perpendicular to the central axis, so that a means of 
determining the "end" of the cylinder would have to be further defined. 

 
Three mutually perpendicular reference axes are 
required to define the location of the center of 
gravity of an object.  These axes are usually 
selected to coincide with edges of the object, 
accurately located details, or the geometric center 
of the object.   
 
It is not sufficient to state that an axis is the 
centerline of the object.  You must also specify 
which surfaces on the object define this centerline.   
 
Moment of inertia is a rotational quantity and 
requires only one axis for its reference.  Although 
this can theoretically be any axis in the vicinity of 
the object, this axis usually is the geometric center, 
the rotational center (if the object revolves on 
bearings), or a principal axis (axis passing through 
the center of gravity which is chosen so the     
products of inertia are zero). 

 
Product of inertia requires three mutually perpendicular 
reference axes.  One of these axes may be a rotational axis 
or a geometric centerline. 
 
For maximum accuracy, it is important to use reference 
axes that can be located with a high degree of precision.  If 
the object is an aerospace item, then we recommend that 
this object be designed with two reference datum rings per 
section, which can be used to define the reference axes.  
These rings can be precision attachment points that are 
used to interface the object with another section of a 
spacecraft or rocket, or they can be rings that were 
provided solely for the purpose of alignment and/or measurement 
of mass properties. The accuracy of calculation (and the 
subsequent accuracy of measurement of an actual piece of hardware) is only as good as 

Figure 2 - Datum Rings 

Figure 1  Center of gravity (and 
product of inertia) are defined 
relative to orthogonal axes  
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the accuracy of the means of locating the reference axes.  We 
have found that the single largest source of error in mass 
properties calculations is the uncertainty of the reference.  The 
dimensional data provided to the mass properties engineer must 
be sufficiently accurate to permit mass properties tolerances to be 
met. 
 
For example, if you are asked to make precise calculations of 
mass properties of a projectile, you should establish the error due 
to reference misalignment as the first step in your calculations. If 
you are required to calculate CG within an accuracy of 0.001 
inch and the reference datum is not round within 0.003 inch, then you 
cannot accomplish your task.  There is no sense in making a detailed 
analysis of the components of an object when the reference error prevents 
accurate calculations.  Furthermore, it will be impossible to accurately measure such a 
part after it is fabricated and verify the accuracy of your calculations.  The location and 
accuracy of the reference axes must be of the highest precision. 
 
If your task is to calculate the mass properties of a vehicle that is assembled in sections, 
then serious thought should be given to the accuracy of alignment of the sections when 
they are assembled.  Often this can be the biggest single factor in limiting the degree of 
balance (if the vehicle was balanced in sections because the total vehicle is too big for the 
balancing machine).  Alignment error is amplified for long rockets . . . a 0.001 inch lean 
introduced by alignment error on a 12 inch diameter can result in a 0.007 inch CG error 
on a 15 foot long rocket section. This is discussed in detail in the sections of this paper 
that present the math for combining the mass properties of subassemblies. 
 
The accuracy required for various types of calculations is summarized in later sections of  
this paper. 
 
 

 

 

 

 

 

 
Choosing the Location of the Axes  
The axes in Figure 3 do not make a good reference because a small error in squareness 
of the bottom of the cylinder causes the object to lean away from the vertical axis.  The 
axes below (Figure 4) make a better choice.  
 
 
 

Figure 3 

The first step in calculating mass properties is to establish the location of the X, 
Y, and Z axes.  The accuracy of the calculations (and later on the accuracy of 
the measurements to verify the calculations) will depend entirely on the 
wisdom used in choosing the axes.  Theoretically, these axes can be at any 
location relative to the object being considered, provided the axes are mutually 
perpendicular.  However, in real life, unless the axes are chosen to be at a 
location that can be accurately measured and identified, the calculations are 
meaningless. 

Figure 4 
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Reference axes must be located at physical points on 
the object that can be accurately measured.  Although 
the center line of a ring may exist in midair, it can be 
accurately measured and is therefore a good reference 
location as can the center of a close tolerance hole 
which could be identified as the zero degree reference 
to identify the X axis (Fig. 4). 
 
An axis should always pass through a surface that is 
rigidly associated with the bulk of the object.  In Figure 

5 it would be better to locate the origin at the end of the 
object rather than the fitting that is loosely dimensioned 
relative to the end. 

 
 
Calculating CG Location 
 
General Discussion 
The center of gravity of an object is: 
   ! also called the "center of mass" of the object. 
   ! the point where the object would balance if placed on a knife edge 
   ! the single point where the static balance moments about three mutually 

perpendicular axes are all zero. 
   ! the centroid of the volume of the object, if the object is homogeneous.    
   ! the point where all the mass of the object could be considered to be concentrated 

when performing static calculations. 
   ! the point about which the object rotates in free space 
   ! the point through which the force of gravity can be considered to act 
   ! the point at which an external force must be applied to produce pure translation of 

an object in space 
 
Center of gravity location is expressed in units of length along each of the three axes (X, 
Y, and  Z).  These are the three components of the vector distance from the origin of the 
coordinate system to the CG location.  Center of gravity of composite masses is 
calculated from moments taken about the origin.  The fundamental dimensions of 
moment are typically Force times Distance.  Alternatively, Mass moment may be used 
with any units of Mass times Distance.  For homogeneous elements, volume moments 
may also be used.  Care must be taken to be sure that moments for all elements are 
expressed in compatible units. 
 
When combining mass elements, a useful technique is to use "offset moments" about 
each of the three orthogonal axes.  The X offset moment  of one element (such as MX1 = 
+3W1) can be easily added to the X offset moments of other elements of mass, the sum 
divided by the total weight, and the result will be the X component of the CG location of 
the composite mass.  Likewise, the Y and Z offset moments (MY1=-5W1, and MZ1=+7W1) 
can be combined with similar Y and Z offset moments of other elements to determine the 
Y and Z components of the CG location.  Unfortunately, the term "X offset moment" is 

Figure 5 
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frequently described as "moment along X".  This does not make mathematical sense, but 
like the term "pound mass" most engineers will understand the meaning. 
 
Component distances for center of gravity location may be either positive or negative, 
and in fact their polarity depends on the choice of reference axis location. 
 
The center of gravity of a homogeneous shape is calculated by determining 
the centroid of its volume.  In real life, most objects are not homogeneous, 
so that the center of gravity must be computed by summing the offset 
moments along each of the three axes.  These processes are described in 
detail in the following sections. 
 
The center of gravity of an object can be located in "midair".  For example, 
the center of gravity of a piece of pipe is on the centerline half way along its 
length, even though there is no metal in the center of the pipe (Figure 6).  
The composite CG of an object can be computed if the CG of each 
component is known.  Examples follow. 
 
CG along a single axis 
 
Consider the round metal rod with two cylindrical weights shown (Figure 7). 
Note that the elements do not have to be the same diameter to be symmetrical 
along the length.  In fact the elements could overlap (such as sliding one pipe 
inside another).  From symmetry, the CG of the object is on its centerline (since 
the CG of a homogeneous mass is at its centroid of volume).  The CG location 
along the length can be determined by summing moments about the reference 
axis at the bottom of the figure (x = 0).   
 
Assume that the element weights are; Wa=12.250 lb, Wb=4.613 lb, Wc=2.553 lb.  
 
 
 

A

Figure 7 – CG 
along a single axis 

Figure 6 
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CG of Unsymmetrical Three Dimensional Body 
The center of gravity of an unsymmetrical body may be 
calculated in the same manner as the single axis example 
above.  Each axis may be considered separately (Figure 8). 
 
Consider the cylinder with attached rectangles.  The CG of 
each component is known by symmetry, computation, or 
measurement.  A convenient frame of reference is assigned, 
in this case such that the CGs of each component fall on the 
axes, and offset moments are summed along each axis. 
Dimensions shown are to the CG of each component from 
the origin. 
 
M M M M lb in
CG lb in lb in

x a b c

x

= + + = + + = −
= − =

0 4 175 0 0 0 7
0 70 4 8 0146

. ( . ) .
. / . .  

 
 

CG of a Complex Shape Similar to a Standard Shape 
Consider the hollow cone shown below.  From symmetry, the CG lies along the center 
line.  The CG distance along the length could be calculated using calculus.  However, the 
CG of a solid cone is given in the SAWE handbook.  Using the observation that a hollow 
cone can be created by removing a small solid cone from a larger one, we can calculate 
the CG by subtracting the moment due to the smaller cone from the larger one. Volume 
moments are taken around the center of the base to find the centroid of the hollow cone.  
When the cone is combined with other elements to find the overall CG, its actual weight 
and calculated centroid location are combined with those of the other elements. 
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Figure 8 – CG of an 
unsymmetrical body 
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Figure 9 – Hollow Cone
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CG of a Complex Unusual Shape 
 
If you encounter a shape which is not in the handbook and which cannot be created from 
known shapes, then it will be necessary to use calculus to calculate its CG. The basic 
concept of the calculation is the same as the previous examples, except the moments that 
are summed are moments involving a small differential slice of the object rather than 
moments of discrete objects.  The trick to simplifying this process is to chose the right 
differential shape, so that triple integration can be avoided. Your differential element 
should not be a small cube unless there is no symmetry of any kind.  Generally you can 
use a rectangular bar that covers the full length of the part, or a thin disc or annular ring 
whose diameter is a function of location.  
 
 To illustrate the CG calculation using calculus, we will use the same hollow cone 
discussed in the previous section. 
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Rectangular to Polar Conversion 
When first calculated, the CG data is in rectangular form.  Often it is useful to convert 
this data into polar coordinates.  Most computers and scientific calculators will do this 
automatically.  However, if one is not available, the following method can be used (two 
axis): 
 
Magnitude 22 YXM +=  
   
Angle 
 A = arcTAN (Y/X)   if X = (+) and Y = (+)  (1st quadrant) 
 A = 180o - arcTAN (Y/X)  if X = (-) and Y = (+)  (2nd quadrant) 
 A = 180o + arcTAN (Y/X)  if X = (-) and Y = (-)  (3rd quadrant) 
 A = 360o - arcTAN (Y/X)  if X = (+) and Y = (-)  (4th quadrant) 
     
 
Polar to Rectangular Conversion 
After the data has been converted to polar form, sometimes you may then need to convert 
it back to rectangular form, using a different set of axes.  This might occur if you wanted 
to adjust the CG offset of a reentry vehicle, so that it was balanced about its centerline.  
In this case, the available locations for correction weights would usually not fall on the 
reference axes. 
 
Step 1  Add appropriate offsets to the X and Y rectangular components. 
 
Step 2 Convert to polar form (magnitude and angle). 
 
Step 3 Add the appropriate offset angle to rotate the vector to the new X-Y coordinate 
system. 
 
Step 4 Convert the new vector to rectangular coordinates using the following formula: 
  
 
 
where X1 and Y1 are the new axes and A1 is the angle between the 

unbalance moment vector and the X1 axis. 
 
Correcting Static Unbalance 
The satellite shown has a calculated static unbalance (CG offset 
moment) of X= -4.65 lb-inch and Y = +12.32 lb-inch.  It is necessary 
to add ballast weights to the vehicle so that this unbalance is reduced 
to zero.  If weights could be added at 0o and 270o, then we would need 
4.65 lb-in at 0o to compensate for the -4.65 lb-in X axis unbalance and 
12.32 lb-in at 270o to compensate for the +12.32 lb-in Y axis unbalance.  
However, these locations are not available.  This is the general situation in 
most aerospace balancing.  In this example, the only locations where these 

( ) ( )X M A Y M A1 1 1 1= =cos sin

Figure 7 – Static Unbalance 
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weights can be added are at 33o and 255o.  The radius of the correction weight at 33o is 
8.25 inches and at 255o is 7.60 inches.  What weights should be added to each location to 
compensate for the unbalance? 
 
The following example outlines the method used to determine the new weights at the 
allowed locations: 
 
We will first calculate the resultant polar magnitude and angle, then calculate rectangular 
coordinates of correction moments.  We will then divide the correction moments by their 
radii to obtain correction weights. 
 
General Correction Equations 

 
 

 
where:  C  = Correction Moments 
  Ac = Allowable Correction Angles 
  M  = Static unbalance Moment 
  A  = Angle of Unbalance Moment 
 
Note that these calculations involving static unbalance are concerned with weight rather 
than mass.  In our example above, the figure did not show the height at which the weights 
were to be added.  In general, the weights should be added at a height that is as close as 
possible to the CG height of the vehicle, so that the addition of these weights will not 
produce a large product of inertia unbalance. 
 
 
Calculating Correction Weights 
 
M M M lb inx y= + = −2 2 1317.  

A TAN y x= −1( / )  

A TAN o= − =−1 12 32 4 65 110 7( . / . ) .  
 
To find Correction Moments C1, and C2 at 33o and 255o locations: 
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Multiply both sides of eq. (2) by: -(0.84/0.54) and add to eq. (1) 
 
0 125 2381

19 05

4 65 26 84
1143

1 2

2

1 2

1

C C
C lb in

C C
C lb in

+ =
= −

= +
= −

. .
.

( . . )/.
.

 

 
Weights to be added: 
 
 
 
 
 
 
 
Note that total weight is more than twice as large as would be required 
if ballast weights could have been added at the angle of the unbalance 
at 8” rad. 
 
Combining CG Data from Subassemblies 
 
Let us consider the case of a three stage rocket.  The center of gravity 
of the individual stages had been originally calculated to be on the 
centerline.  After construction, the CG of each section has been 
measured and found to be: 
           

          X       Y        Z      W 
Stage 1  +0.004"  -0.012"  -27.436" 167 lb. 
Stage 2   -0.007"  +0.012" +32.771"   96 lb. 
Stage 3   -0.004"  +0.012" +12.115"   43 lb. 

      TOTAL 306 lb. 
Two views of the rocket are shown. The top view shows the X and Y 
axes; side view shows X and Z axes. 
 
The X and Y coordinates are measured from the centerline of the 
section; the Z coordinates of stages 1 and 2 are measured from their 
intersection, while the Z coordinate of the third stage is measured from 
the intersection of stages 2 and 3.  In order to calculate the Z center of gravity location, 
we will first have to translate the stage 3 coordinate to the same reference as 
stages 1 and 2.  Since the length of stage 2 is 51.125 inches, the Z coordinate 
becomes 12.115 + 51.125 = 63.240 inches. 
 
If the three stages were perfectly aligned at assembly, then the combined CG 
of the total rocket could be calculated by summing X, Y, and Z offset moments about the 
origin: 

W
lb in

in
lb
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lb in
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lb
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2
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8 25

139

19 05
7 6

2 51
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.
.
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Stage 3

Stage 2

    Stage 1

Figure 8 – CG of Three 
Stage Rocket 
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           X            Y            Z 
Stage 1   +0.668 lb-in.    -2.004 lb-in.    -4581.812 lb-in. 
Stage 2   -0.672 lb-in.   +1.152 lb-in.   +3146.016 lb-in. 
Stage 3    -0.172 lb-in.   +0.516 lb-in.   +2719.320 lb-in. 
Total Moment  -0.176 lb-in.    -0.336 lb-in.   +1283.524 lb-in. 
 
Moment/306 lb  -0.00058 in.    -0.00110 in.   +4.1945 in. 
 
If the three stages are assembled with an alignment error, then: 
 
1.  Select one of the stages to be the reference.  For this example we will choose stage 2.  
The CG coordinates for this stage will therefore remain unchanged. 
 
2.  Recalculate the CG coordinates for stages 1 and 3 to reflect the alignment error.  If the 
stages did not assemble tightly along their length, so that there is a 0.006 inch gap 
between stages 2 and 3, then the  63.240 Z dimension becomes 63.246.  If the X axis is 
shifted sideways on the first stage by +0.003 inch, then the -0.004 inch X dimension for 
the first stage becomes -0.001 inch, etc.  If the stages are tilted relative to each other, then 
the offset due to the tilt must be determined at the CG height of the stage.  For example, 
if stage 3 is tilted so that the error on the Y axis at a Z dimension of 24.5 inch is +0.020, 
then the Z axis correction for stage three is:  .020 x 12.115/24.500 = 0.00989 inch. 
 
The new value of Y for stage three is therefore:     Y = 0.012 + 0.00989 = 0.0219 inch 
 
3.  After the revised table for the CG coordinates for stages 1 and 3 are complete, then the 
calculation proceeds in a manner identical to the example with perfect alignment. 
 
CALCULATING MOMENT OF INERTIA 
 
General Comments 
Moment of inertia ("MOI") is similar to inertia, except it applies to rotation rather than 
linear motion.  Inertia is the tendency of an object to remain at rest or to continue moving 
in a straight line at the same velocity.  Inertia can be thought of as another word for mass.  
Moment of inertia is, therefore, rotational mass.  Unlike inertia, MOI also depends on the 
distribution of mass in an object.  The greater the distance the mass is from the center of 
rotation, the greater the moment of inertia. 
 
A formula analogous to Newton's second law of motion can be written for rotation: 
 
 F = Ma  (F = force; M = mass; a = linear acceleration) 
 T = IA  (T = torque; I = moment of inertia; A = rotational acceleration) 
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Choosing the Reference Axis Location 
Three reference axes were necessary to define center of gravity.  Only one axis is 
necessary to define moment of inertia.  Although any axis can be chosen as a reference, it 
is generally desirable to choose the axis of rotation of the object.  If the object is mounted 
on bearings, then this axis is defined by the centerline of the bearings.  If the object flies 
in space, then this axis is a "principal axis" (axis passing through the center of gravity and 
oriented such that the product of inertia about this axis is zero (see discussion of product 
of inertia).  If the reference axis will be used to calculate moment of inertia of a complex 
shape, choose an axis of symmetry to simplify the calculation.  This axis can later on be 
translated to another axis if desired, using the rules outlined in the section entitled 
"Parallel Axis Theorem". 
 
Polarity of Moment of Inertia 
Values for center of gravity can be either positive or negative, and in fact their polarity 
depends on the choice of reference axis location.  Values for moment of inertia can only 
be positive, just as mass can only be positive. 
 
Units of Moment of Inertia 
In the United States, the word "pound" is often misused to describe both mass and 
weight.  If the unit of weight is the pound, then the unit of mass cannot also be a pound, 
since this would violate Newton's second law.  However, for reasons which have been 
lost in antiquity, in the USA an object weighing 1 pound is often referred to as having a 
mass of 1 pound. This leads to units of moment of inertia such as lb-in2, where the "lb" 
refers to the weight of the object rather than its mass.  Correct units of moment of inertia 
(or product of inertia) are:  MASS x DISTANCE2 
 
When lb-in2 or lb-ft2 are used to define MOI or POI, the quantity MUST be divided by 
the appropriate value of "g" to be dimensionally correct in engineering calculations.  
Again, dimensional analysis will confirm if correct units are being used. 
 
The following table shows some of the units in use today for moment of inertia and 
product of inertia: 
 
UNIT   COMMENTS 
lb-in2  lb = weight; must be divided by g = 386.088 in/sec2 
lb-in-sec2 lb-in-sec2 = distance2 x weight/g; weight/g = mass; dimensionally correct 
slug-ft2  slug = mass; dimensionally correct 
kg-m2  Kg = mass; dimensionally correct 
 
The most common units used in the U.S. are lb-in2 , even though this is dimensionally 
incorrect. 
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RULE 1.  If moment of inertia or product of inertia are 
expressed in the following units, then their values can be 
used in engineering calculations as they are: 
 
Slug-ft2,   lb-in-sec2,   kg-m2,  lb-ft-sec2, oz-in-sec2     
 
RULE 2.  If moment of inertia or product of inertia are 
expressed in the following units, then their values must be 
divided by the appropriate value of "g" to make them 
dimensionally correct. 
 
lb-ft2,   lb-in2,   oz-in2 

 

Value of g :  32.17405 ft/sec2 or 386.088 in/sec2 
Do not use local value of g to convert to mass!  
 
Calculating the Moment of Inertia 
MOI, sometimes called the second moment, for a point mass 
around any axis is:    I = Mr2 
 
where  I = MOI  (slug-ft2 or other mass-length2 units) 
 M = mass of element (Slugs or other mass unit) 

r = distance from the point mass to the reference axis 
 
Radius of Gyration 
The moment of inertia of any object about an axis through its CG can be 
expressed by the formula:    I = Mk2 
 
where I = moment of inertia  
            M = mass (slug) or other correct unit of mass  
            k = length (radius of gyration) (ft) or any other unit of length 
 
The distance (k) is called the Radius of Gyration.  The method of calculating 
radius of gyration is outlined in the following sections.  
 
Consider first the body consisting of two point masses each with a mass of 
M/2 separated by a distance of 2r.  The reference axis is through a point 
equidistant from the two masses.  The masses each have a MOI of Mr2/2.  Their 
combined MOI is therefore Mr2.  The second example shows a thin walled tube of 
radius r.  By symmetry, the CG lies on the centerline of the tube.  Again, all the mass is 
located at a distance r from the reference axis so its MOI = Mr2.  In these examples, the 
radius of gyration is k = r.  This leads to the definition: 
 
"The radius of gyration of an object, with respect to an axis through the CG, is the 
distance from the axis at which all of the mass of an object could be concentrated without 
changing its moment of inertia.  Radius of gyration is always measured from CG." 

Figure 9 

Figure 10 
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Parallel Axis Theorem 
If in the example above we wanted to determine the MOI of the 
object about the axis Xa rather than the axis X, through the CG, 
then the value can be determined using the parallel axis theorem:  
Ia = I + d2 M,      Since I = k2 M, then Ia = M (d2 + k2) 
where k is the radius of gyration. 
 
This parallel axis theorem is used very frequently when calculating 
the MOI of a rocket or other aerospace item.  The MOI of each 
component in the rocket is first measured or calculated around an axis through its CG, 
and the parallel axis theorem is then used to determine the MOI of the total vehicle with 
these components mounted in their proper location.  The offset "d" is the distance from 
the CG of the component to the centerline of the rocket. 
 
Useful Approximations 
Since the moment of inertia of an object displaced from its 
reference axis is proportional to (d2 + k2), we can make two 
observations that will simplify the job of calculating MOI: 
 
RULE 1.  If the radius of gyration of an object is less than 1% of 
its offset distance "d", then the MOI of the object around its CG 
can be ignored when calculating total MOI, and the value becomes 
d2M. For example if a gyro with a mass of 0.1 slug is located near 
the outer surface of a rocket and the offset to the CG of the gyro is 
3 feet while the radius of gyration of the gyro is only 0.02 ft, then 
the MOI about the center line of the rocket due to the gyro is d2M 
= 0.9 slug-ft2. The error using this approximation is less than 0.01%.  
 
RULE 2.  If the radius of gyration of an object is more than 100 times its offset distance 
"d", then the offset of the object can be ignored when calculating total MOI, and the 
value becomes k2 M.  For example if a rocket motor with a mass of 100 pounds is located 
near the center line of the rocket and the offset to the CG of the rocket motor is 0.100 
inches, while the radius of gyration of the rocket motor is 12 inches, then the MOI about 
the center line of the rocket due to the rocket motor is k2 M = 14400 lb-in2 (or more 
properly 37.3 lb-in-sec2). Again the error of approximation is less than 0.01% 
 
Rule 2 can also be applied to alignment errors when calculating or measuring MOI.  If 
the offset or misalignment is less than 1% of the radius of gyration, then the alignment 
error is insignificant. 
 
 
 

K

MK Figure 11 

Figure 12 
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Combining Moment of Inertia of Two Objects 
If the object contains more than one mass, then the moment of inertia 
is the sum of the individual moments of inertia taken about the same 
axis.  The radius of gyration is: 
 







=

total

total

M
Ik  

     
The moment of inertia of the two examples (fig. 13) is the same.  
Note that it makes no difference what angle the masses have relative 
to each other.  Radius is the only factor affecting their moment of 
inertia. 
 
These examples illustrate that moment of inertia depends only on the 
radius of the masses within an object.  However, if the object were 
flying in space, since the CG, radius of gyration, and principle axis 
would be different for the two examples, their flight characteristics 
would differ. 
 
Basic Formula Using Differential Elements of Mass 
The basic technique for calculating moment of inertia of an object is 
to consider each element of mass and its radius, apply the formula I = 
Mr2 to each, and then add up all the moments of inertia of the 
elements. 
 
If this were done as described, then the computation would be of the 
form: 
 
 I1 = M1 (r1)2      where r1 is the radius of M1, etc. 

 I2 = M2 (r2)2 

 In = Mn (rn)2   etc. 
 ------------------------- 

I  = Total of above 
 

 
If the object is a homogeneous solid, then this process can be accomplished by choosing a 
suitable differential element and integrating over the limits of the radius: 
 

 
 

Figure 13  

Each weight = 1 lb. 
 
Radius from X axis=2 in. 
 
Ix = 1 x 22 +1 x 22 = 8 lb-in2 

 
The MOI about the X axis is 
the same for both examples 

I r dM= ∫ 2
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Combining axial MOI values 
If the axial moment of inertia of two cylindrical rocket sections about their mutual 
centerline are 10 slug-ft2 and 20 slug-ft2 respectively, then the total moment of inertia of 
both sections when assembled is 30 slug-ft2.  Moment of inertia values are simply added 
to obtain the total.  Before adding the values, make certain that they are both calculated 
about axes which are coincident when assembled and that the units for each are consistent 
and correct.  Alignment is relatively unimportant.  The moment of inertia error due to 
misalignment is proportional to the ratio of the square of the misalignment offset to the 
square of the radius of gyration of the object.  For example, if a rocket has a radius of 
gyration of 15 inches, and it is laterally misaligned by 0.002 inch, then the resulting error 
is only 0.000,002% (2 millionths of 1 percent)! 
 
Combining Transverse MOI Values 
The combination of MOI around transverse axes is a more complex procedure.  
 
1. The MOI of each component around an axis through its own CG parallel to the desired 
axis must be determined by computation or measurement  
 
2. The location of the composite CG must be calculated 
 
3. The MOI of each component around the composite CG must be calculated using the 
parallel axis theorem 
 
4. The MOIs are added to find the total MOI around the desired axis through the 
composite CG. 
 
Standard Shapes 
The moment of inertia of a variety of standard shapes has been published in most of the 
textbooks and handbooks that cover dynamics such as the SAWE Handbook, 
Machinery's Handbook etc.    
 
Moment of Inertia of Objects Similar to Standard Shapes 
Since total moment of inertia can be calculated by simply summing the values of the 
component parts, it is possible to derive the MOI of many shapes by modifying the values 
for standard shapes.  This often eliminates the need for calculus and greatly speeds up the 
calculation of MOI.  For example to determine MOI for a hollow cone, note that MOI of 
the inner conical space can be subtracted from the outer as a technique for simplifying 
calculations even though there is no such thing as negative moment of inertia. 
 
Composite MOI Example 
An example finding composite MOI around the Z (longitudinal) axis is shown using a 
reentry vehicle consisting of a hollow cone and other components.  The parallel axis 
theorem is used to calculate Iz for off center components. 
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CALCULATE MOI AROUND Z AXIS 
 
 200 lb(15)2 in2 ft2 sec2 
IA =                                       = 9.6 lb-ft-sec2 = 9.6 slug-ft2 
        144 in2 32ft 
 
 
 450 lb-in2 sec2 ft 
IB =                                       =0.097 lb-ft-sec2 =0 .1 Slug-ft2 
 386.088 in  12 in 
 
 
Ic = 25 Slug-ft2 
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ftinlbI
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Iz TOTAL = 9.6 + .1 + 25 + 2.03 + 1.92 = 38.65 Slug-Ft2 

 

Effects of Misalignment 
When misalignment results in tilt errors, or if other effects cause the CG as well as MOI 
to change, more complex analysis must be performed.  This will be discussed further 
under "Product of Inertia". 
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Calculating Product of Inertia 
 
General Comments 
Consider the homogeneous balanced cylinder to which two equal 
weights have been attached 180o apart, and spaced equidistant 
along the length from the CG of the cylinder.  The addition of 
these weights will not alter the CG of the cylinder, and the cylinder 
remains statically balanced.  However, if we spin this cylinder 
about the vertical Z axis, then centrifugal force acts through the 
two weights and produces a couple.  If the cylinder is mounted on 
bearings, then this couple causes a sinusoidal force to be exerted 
against the bearings as the cylinder rotates.  If the cylinder is 
spinning in space, then the axis of rotation of the cylinder shifts to 
align itself to a condition where the centrifugal forces are equalized (i.e., 
it shifts toward the unbalance weights slightly).  The mass distribution 
which results in a couple moment when the object is spinning is called 
"product of inertia." 
 
Basically, product of inertia ("POI") is a measure of dynamic unbalance.  POI is 
expressed in the same units as moment of inertia, but it can have either a positive or 
negative polarity.  Product of inertia is generally not covered in undergraduate dynamics 
courses, and consequently many engineers are unfamiliar with this concept. 
 
Choosing the Reference Axis Location 
Like center of gravity, three mutually perpendicular reference axes are necessary to 
define products of inertia (only one axis is necessary to define moment of inertia).  
Although any axis can be chosen as a reference, it is generally desirable to select the axis 
of rotation of the object as one axis.  If the object is mounted on bearings, then this axis is 
defined by the centerline of the bearings.  If the object flies in space, then this axis is 
often defined by the location of thrusters.  On reentry vehicles, the axis may be 
coincident with the path of flight resulting from axis of symmetry of the outer surface of 
the vehicle.  If the reference axis will be used to calculate product of inertia of a complex 
shape, choose an axis of symmetry to simplify the calculation.  This axis can later on be 
translated to another axis if desired, using the rules outlined in the section entitled "POI 
Parallel Axis Theorem."   
 
Polarity of Product of Inertia 
Values for product of inertia can be either positive or negative, and in fact their polarity 
depends on the choice of reference axis location.  In this respect, POI is similar to CG.  
Values for moment of inertia can only be positive, just as mass can only be positive.  
Generally, the product of inertia of one component is offset by a negative product of 
inertia due to another component, so that the composite product of inertia of a composite 
object will be much smaller than the product of inertia of many of its elements. 

Figure 14– CGz=0, but 
weights cause couple 
moment
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Units of Product of Inertia 
Product of inertia is expressed in the units of mass times distance 
squared.  For CG calculations we used the weight of the object; 
product of inertia calculations use the mass.  Unfortunately, the word 
"pound" can mean either weight or mass, so the engineer must use 
caution when applying product of inertia values to engineering 
equations. (See section entitled “Units of Moment of Inertia”). 
 
Sometimes engineers will encounter bogus units for product of 
inertia such as "oz-inch."  Although such units are incorrect, they 
have meaning in context with the machine used to measure dynamic 
unbalance.  This machine may have a readout for a specific 
correction plane height which gives the moment required at this 
plane height to reduce the product of inertia to zero.  This data can 
be converted to valid units by multiplying the "oz-inch" moment by 
the height between the correction plane and the test object CG (and 
then converting the weight in ounces to a unit of mass).  This is 
explained in more detail in the section on correction of dynamic 
unbalance. 

 
Principal Axis 
On any object there will be three mutually perpendicular axes 
intersecting at the CG for which the products of inertia will be zero.  
For a perfect cylinder, these axes correspond to the centerline of the 
cylinder plus two mutually perpendicular axes through the CG at any 
orientation (since the cylinder has perfect symmetry).  These axes 
are called the "principal axes."  The moment of inertia of the object is at a 
maximum about one principal axis and at a minimum about another 
principal axis.  A spin stabilized vehicle will rotate about a principal axis 
(usually the axis of minimum moment of inertia). 
 
 
Calculating Product of Inertia 
A perfectly balanced cylinder rotates on a set of bearings.  A small weight 
whose POI is zero is mounted on this cylinder.  The product of inertia due 
to this weight is: 
 
Pzx =  M Z X = 0.01 x 2 x 1 = 0.02 slug-ft2 
 
where M = mass of weight = 0.01 slug 
 X = radius of CG of weight = 1 foot 
 Z = height between CG of cylinder & CG of weight = 2 feet 
 

Figure 16 - calculation of Pzx & Pzy 

Figure 15 - X, Y and Z are 
principal axes 
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This calculated POI is in the X-Z plane of the cylinder. If a similar weight were then 
added on the Y axis at a location above the CG of the cylinder, the value for Pzx would 
not change, since the X coordinate of this weight would be zero.  The second POI 
component,  Pzy, could be calculated as shown below. 
 
The product of inertia due to this weight is:  Pzy = MZY = 0.01 x 2 x (-1) = -0.02 slug-ft2 
 
where M = mass of weight = 0.01 slug 
 Y = radius of CG of weight = -1 foot 
 Z = height between CG of cylinder & CG of weight = 2 feet 
Note that the value for Pzy is negative. 
 
Rectangular to Polar Conversion 
The previous examples were for a special case where the unbalance was located directly 
on either the X or Y axis.  When this occurs, then the mathematics is simplified, because 
the unbalance can be analyzed as a two-dimensional problem on a plane rather than a  
three-dimensional problem.  A realistic object generally contains a couple unbalance that 
does not fall directly on any axis.  However, this unbalance can be converted into 
rectangular components that fall directly on the axes, so that simplified calculations are 
possible 

 
 
 
The real object under test is shown in A.  The unbalance equivalent of this object can be 
simulated by a single weight in each of the two planes as shown in B (angular difference 
between upper and lower planes can be any angle).  As an aid to analysis, each single 
weight in the previous example can be replaced by two weights located on the X and Y 
axes as shown in C (i.e., polar to rectangular conversion).  Each plane can now be 
analyzed separately. 
 
At the conclusion of all calculations, the resulting Pzx and Pzy can then be converted 
back into polar coordinates if desired.  The procedure for these rectangular-to-polar 
transformations is described in the section of this paper dealing with center of gravity.  

Figure 17 – Any POI can be simulated by two weights in upper plane and two 
weights in lower plane 
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The product of inertia of the two components in the previous example can be resolved 
into a single resultant Pzr in the ZR plane which passes through the equivalent unbalance 
mass and the Z axis. 

22
zyzxzr PPP +=   Angle between resultant and X axis = arcTAN (Pzy / Pzx) 

 
Difference between CG Offset and Product of Inertia 
The figures illustrate the difference between static unbalance (CG 
offset) and couple unbalance (product of inertia).  In the example 
shown in figure 18, a 5 lb weight is added in the plane of the CG, 
creating a static unbalance but no product of inertia. 
 

Pzx = 0 lb-in2 

CGx = 25 lb-in 

CGz = 0 lb-in 
 
In the example shown in figure 19,  a weight is added outside the 
plane of the CG, creating both static and dynamic unbalance 
(product of inertia not zero).  (This is sometimes called "quasistatic 
unbalance," since a single correction weight can be used to correct 
for this unbalance.) 

Pzx = +75 lb-in2 

 CGx = +25 lb-in 

 CGz = +15 lb-in 
 
In the example in figure 20, a second weight is added at 180o at the 
bottom of the cylinder in the above example, creating a static balance 
but not a dynamic balance. 
 
Pzx = 5 lb x 3 in x 5 in + 5 lb x (-3) x (-5) =     150 lb-in2 

CGz = +15 lb-in - 15 lb-in = 0 

CGx = +25 lb-in - 25 lb-in = 0 
 
 

Figure 18- CG offset 

Figure 20 – Static & 
dynamic unbalance 

Figure 19 – Quasistatic unbalance 
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In figure 21, we move this lower weight up to the plane 
of the first, creating both static and dynamic balance 
about z. 
 
Pzx = +75 lb-in2 - 75 lb-in2 = 0 

CGz = +15 + 15 = 30 lb-in   

CGx = +25 - 25 = 0 lb-in 
 
 
The previous discussion has assumed that the small 
unbalance weights were perfectly symmetrical, and 
therefore the product of inertia of the weight itself could be 
ignored.  In real life, the "weights" consist of various 
components of a rocket or spacecraft, and their product of 
inertia is usually not zero.  Even if the component products of inertia are small, they 
cannot be ignored since the product of inertia of the total vehicle is usually very small, 
and even the smallest couple unbalance can tilt the principal axis of the vehicle. 
 
 
POI Parallel Axis Theorem 
When determining the product of inertia of a vehicle, it will be 
necessary to first calculate or measure the product of inertia of the 
component parts of the vehicle, and then translate these values to 
the effective POI about the axes of the vehicle.   
  
To translate the product of inertia of an object relative to the X', Y', 
Z' axes to the X, Y, Z axes:  
 
P P M z x
P P M z y

zx z x

zy z y

= +
= +

′ ′

′ ′
 

 
where  M = mass of object 
x, y, z = CG offsets from coordinate origin along the X, Y, Z axes  
 
It is much more difficult to use this theorem than the equivalent one for moment of 
inertia, because there are two formulas required, and because each term has a polarity 
associated with it.  The following example illustrates this type of translation: 
 
Example for the illustration shown, let z = -4, x = +5, and y = -6 inches.  The product of 
inertia of the object about the X', Y', Z' axes is Pz'x' = -2 lb-in-sec2, Pz'y' = 0 lb-in-sec2.  
The weight of the object is 4 lbs.  Calculate the effective product of inertia of the object 
relative to the X, Y, Z axes: 
 

Figure 22– POI can be 
translated to another set of 
parallel axes

Figure 21 – Static & dynamic balance 
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Calculate mass: 
 
 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
Comparison Between MOI and POI 
There are some similarities and some differences between this axis translation formula 
and the formula to translate moment of inertia to a different parallel axis: 
 
1.  Both formulas are dimensionally similar:   
 
(mass) (length)2 = (mass) (length)2 + (mass) (length)2 
 
However, the polarity of the values of (mass) (length)2 can only be positive for moment 
of inertia, whereas they can be either positive or negative for product of inertia. 
 
2.  In the case of moment of inertia, it is possible to ignore the MOI of the object about its 
CG if the translation term is large.  This is not so for product of inertia!  
If the POI of the object about its own CG is not zero, it cannot be 
ignored, even if the translation term value, Mxy, is large, since small 
values of product of inertia can be very significant if one large term is 
subtracted from another, leaving a small difference. 
 
3.  In the case of moment of inertia, the value for the MOI about the CG 
of an object always has a value greater than zero.  It is possible for the 
product of inertia of an object to be zero, so that the translation formula 
becomes Pzx = M z x. 
 

4
386 088

0 01036 2

( . )
. sec

=
−lb

in

P P M z yzy z y= +′ ′

P lb inzy = + − − = − −0 0 01036 4 6 0 24864 2( . )( )( ) . sec

P P M z xzx z x= +′ ′

P lb inzx = − + − + = − − −2 0 01036 4 5 2 2072 2( . )( )( ) . sec

Figure 23- Pzx is zero for all of 
the examples above 
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Axes and Planes of Symmetry 
The product of inertia of a homogenous body with respect to any pair of perpendicular 
axes is EQUAL TO ZERO if the plane determined by either of the axes and the third 
coordinate axis is a plane of symmetry of the body.  This rule is hard to visualize when 
put into words.  The examples on the right illustrate some symmetrical shapes that have a 
zero Pzx. 
 
Determining Product of Inertia of a Volume 
The basic concept of determining the product of inertia of a homogeneous volume is 
identical to the previous method involving discrete objects, except the objects are now 
differential elements of a solid.  The formula becomes: 
 
P M yxdVyx = ∫  
 
where  M = total mass of object;  dV = differential volume 
 
As in the case for moment of inertia and center of gravity, the 
solution to the problem can be simplified by choosing the right 
differential element.  For example, the elliptical wing tip shown 
can be analyzed using a small square element dX by dY.  This 
leads to a double integral.  If a rectangular slice parallel to the X 
axis is chosen instead, then the POI of the element is zero, and the 
product of inertia of dA is: 
 
The CG of the rectangular slice is at x/2 
 

 
 
 
 
 

 
From the equation of an ellipse: 
 

x
a b y a
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Therefore: 
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Figure 24 – Calculation of POI 
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Combining the POI of Two Bodies 
If two sections of a rocket are combined, what is the resulting 
product of inertia?  If the sections are aligned perfectly, so 
that the Z reference axis for the lower section is exactly 
coincident with the Z reference axis for the upper section, 
then the following method can be used: 
 
1.  Transform the product of inertia of the lower section into 
values for Pzx and Pzy (polar to rectangular conversion).  If 
the X and Y axes for the upper section do not correspond to 
those chosen for the lower section, rotate the data by 
converting temporarily in polar form and then back into the 
new rectangular axes, so that upper and lower axes are at the 
same angular location.  Analysis will be done by planes and 
transformed into polar coordinates if desired after all 
calculations have been made. 
 
2.  Sum the values for Pzx upper and Pzx lower.  Do the same 

for Pzy.  Note:  observe the polarity of the data!  This will 
yield new product of inertia values for the composite vehicle.  
(The values for the total can be larger or smaller than the 
individual values.) 
 
 
Effect of Lateral Misalignment 
What happens if the two sections are not aligned, so that the axes are parallel to 
each other, but the axis of one is not coincident with the axis of the other?  Here 
is the method we recommend for analyzing this type of problem: 
 
1.  The location of the upper section must be defined in terms of the lower 
reference axis.  This requires the measurement of offset of the upper section 
when both sections are assembled.  This can be accomplished by placing the 
total rocket on a rotary table and dial indicating both lower and upper section; or 
if this is not possible, then measurements can be made of the individual sections 
and their interface ring concentricity and the offset calculated (not as accurate a 
method). 
 
2.  Calculate the X, Y, and Z coordinates of the CG of the total rocket.  The new 
reference axis for the total rocket will pass through the new CG and be parallel 
to the reference axes of the two sections.  The centerline of the two sections will 
be offset from this axis by some small but not insignificant amount.  
Often, the magnitude of POI resulting from misalignment will be greater 
than the POI of the individual sections, so that it is not satisfactory to 
ignore this effect.  The X or Y axis distance will be small, but the mass 
will be very large since it is the entire mass of a section. 

Figure 25 – Combining POI 

Figure 26 – Lateral  misalignment 
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3.  Pzx relative to the new combined axis due to the Pzx of the upper section may be 
calculated by using the parallel axis translation formula: 
 
where Pzx = POI relative to combined CG 

  Pz'x' = POI relative to upper section 
  M = mass of upper section x 
  z = distance between composite CG and upper section CG 
  x = offset between new combined reference and upper reference 
 
In the view shown, both z and x are positive, so that the POI due to the upper offset is 
positive. 
 
4.  Repeat the calculation for the lower section.  In the view shown, both z and x are 
negative, so that the POI due to the lower section offset is also positive. 
 
5.  Sum the values for Pzx upper and Pzx lower to yield Pzx total. 
 
6.  Repeat Steps 3, 4, and 5 for Pzy . 
 
7.  If desired, convert Pzy and Pzx into Pzr , the resultant polar representation. 
 
Effect of Tilt on MOI and POI 
If a perfectly balanced cylinder is tilted by an angle "a," then Pzx, Iz, and 

Ix will change.  As the cylinder leans to an angle of 90o, Iz becomes Ix, 

and Ix becomes Iz.  For a lean angle of 0o, Pzx is zero.  For a lean angle 

of 45o, Pzx is a maximum determined by the values of Iz and Ix.  At a 

lean angle of 90o, Pzx is again zero.  This unique relationship between 
moment of inertia and product of inertia is discussed in the SAWE paper 
No. 1473 entitled "Determining Product of Inertia Using a Torsion 
Pendulum."  This paper outlines a method of measuring POI of objects 
using a moment of inertia instrument. 
 
When the MOI or POI of an object is determined about its center line, 
and the object is then installed in a vehicle in such a way that there is a 
lean angle between the center line of the object and the reference of the 
vehicle, then it is very useful to be able to convert the calculated values for the object into 
mass properties relative to the new reference without having to recalculate the object 
itself.  These "lean angle formulas" are given below. 

P P M z xzx z x= +′ ′

Figure 27– Axis Tilt 
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MOI Inclined Axis Formulas 
For the balanced cylinder shown, the moment of inertia about an axis Z' displaced from 
the center line of the cylinder by an angle "a": 
 

( )I I I I I az z x z x′ = + + −05 05 2. ( ) . cos( )  
 
Note that for this example, Pzx was zero.  This formula is only valid for the orientation of 
the axes shown.  There are some interesting observations to be made regarding the 
change in MOI: 
 
1.  The MOI at an angle of 45o is the average of Iz and Ix. 
 
2.  The sensitivity to tilt angle is a function of the difference between Ix and Iz.  If there is 
very little difference, then tilt angle can be ignored.  If the object is tall and slender, then 
tilt angle is very critical. 
 
In addition to being useful in the calculation of MOI, this formula also can be used to 
determine fixturing accuracy required when measuring MOI.  When measuring tall, 
slender rockets, the axial MOI error will be large unless the rocket is fixtured very 
carefully.  Transverse MOI (Iy and Ix) can be measured on a vee block fixture without the 
need to adjust the rocket's position, since the sensitivity to lean is very small in this case. 
 
MOI Incline Axis with POI 
The previous analysis assumed that the Z and X axes were principal axes and the POI 
was zero.  If this is not the case, then the formula becomes: 
 

( ) ( )I I I I I a P az z x z x zx′ = + + − +05 05 2 2. . cos( ) sin( )  
 
This formula reflects the fact that the principal axis is no longer through the centerline of 
the cylinder, so that the maximum and minimum MOI are no longer axes X and Z. 
 
The formulas presented also assume that there is no tilt in the Y direction, so that the 
problem can be analyzed from a two-dimensional standpoint.  If this is not the case, then 
the coordinate system must be transformed so that it is.  Furthermore, note that the origin 
of the two axes is at the CG of the object.  Equations can be written for the more general 
case.  However, it is easier to manipulate the axes than to solve the general equations. 
 
 



                                                             Page 28 

POI Inclined Axis Formulas 
Since POI and MOI are related, it might be assumed that a similar formula can be written 
for the POI of an object when tilted.  In this case, we are starting with a value of Pzx, 
which is zero and returning to a value of zero at an angle of 90o.  The formula is: 
 
P I I a P az x x z zx′ ′ = − −05 2 2. ( ) sin ( ) cos( )  
 
If the X and Z axes are principal axes, then the formula becomes: 
 
P I I az x x z′ ′ = −05 2. ( ) sin ( )  
 
These formulas are only valid for the orientation of the axes shown (fig. 27) and for the 
direction and definition of positive tilt angle (CCW from the Z axis). 
 
Mohr's Circle 
A graphical representation of the relationship between MOI and POI was originated in 
the 19th century by a German engineer, Otto Mohr.  A copy of this aid is reproduced from 
the SAWE handbook and is shown on the next page.  With the advent of the personal 
computer, graphical solutions to engineering problems are no longer necessary; but 
Mohr's circle still is useful in visualizing the effect of tilt. 
 

Mohr's Circle for Moments of Inertia 
 
Given (1)  The moment of inertia values IX, IY for an object about its center of gravity, 

where the center of gravity lies at the origin of a set of mutually perpendicular 
axes X-Y. 

 
 (2)  The corresponding value for the product of inertia, PXY 
 
Mohr's circle is then constructed using the layout geometry shown below.  The following 
information may then be obtained. 
 
(1)  The location of the principal axes about which the moments of inertia 
are maximum and minimum and the products of inertia are zero. 
 
(2) The corresponding maximum and minimum values of moments of 
inertia. 
 
(3)  The moments and products of inertia for any other set of mutually 
perpendicular axes A-B whose origin lies at the center of gravity of the 
given object and rotated C degrees from the original axes X-Y (reference, 
the figure to the right). 
 
(4)  The maximum values for the products of inertia about axes located 45o from the 
principal axes. 

Figure 28 
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Layout Geometry 
 

( )The Radius of the circle is R
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Figure 29 – Mohr’s  Circle 
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Effect of Angular Misalignment (Tilt)  
If the upper section is tilted relative to the lower section, then two 
factors tend to increase the effective POI of this section:  the tilt results 
in a CG offset similar to the case described previously, and the tilt also 
alters the POI of the upper section itself.  The method for calculating 
the total POI is as follows: 
 
1.  Using the center line of the lower section as a reference, calculate 
the Y axis offset of the CG of the upper section from the 
formula: 
 
Y =  H sin a 
  
Where: H is the CG height of upper section 
  a is the tilt angle in the z-y plane 
 
Using a similar concept, calculate the X offset of the upper section. 
 
2.  Calculate the X, Y, and Z coordinates of the CG of the total rocket.  The new 
reference axis for the total rocket will pass through the new CG and be parallel to the 
reference axes of the lower section. 
 
3.  Recalculate the Pzx of the upper section by applying the axis tilt formula.  Add this 

POI to the Pzx of the upper section relative to its center line (observe signs; value for Pzx 
may be either larger or smaller than value without considering tilt). 
 
4.  Pzx relative to the new combined axis due to the Pzx of the upper section may be 
calculated by using the parallel axis translation formula: 
 
P P M z xzx z x= +' '  
 
where Pzx = POI relative to combined CG reference axes 

  Pz'x' = POI relative to upper section after effect of tilt has been added 
  M = mass of upper section 
  z = distance between composite CG and upper section CG 
  x = offset between new combined reference and upper reference 
 
In the view shown, both z and x are positive, so that the POI due to the upper offset is 
positive. 
 
5.  Repeat the calculation in Step 4 for the lower section.  Since this section is not tilted, 
the Pz'x' is the value through the center line.  In the view shown, both z and x are 
negative, so that the POI due to the lower section offset is also positive. 
 

X

Figure 30 – Angular Misalignment 
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6.  Sum the values for Pzx upper and Pzx lower to yield Pzx total. 
 
7.  Repeat Steps 3, 4, 5 and 6 for Pzy . 
 
8.  If desired, convert Pzx and Pzy into Pzr , the resultant polar representation. 
 
Angle of Inclination of Reentry Vehicle 
An aerospace vehicle will often have an axis defined by the minimum air 
resistance  of the vehicle.  This axis corresponds to the axis of symmetry of 
the outer surface of the vehicle.  Since the vehicle is not homogeneous, the 
product of inertia about this axis may not be zero, resulting in a principal 
axis at an angle to the axis of symmetry of the vehicle.  The angle is known 
as the "angle of inclination" of the vehicle.  Generally, it is desirable to 
make this angle as small as possible so the vehicle will "fly straight".  
Sometimes, however, this angle is deliberately adjusted to a specific value, 
so a reentry vehicle will have a "coning" motion upon entering the 
atmosphere, and the resulting drag will slow the reentry. 
 
Angle of inclination may be calculated using the following formula: 
 
 
 
 
Example:  Given Pzx = 0.002 lb-in-sec2 

   Ixx = 8.95 lb-in2 

   Izz = 2.40 lb-in2 
 
What is the angle of inclination in the X-Z plane?  First, the units of moment of inertia 
must be converted to lb-in-sec2 to be consistent with the units for product of inertia (or 
the units for product of inertia could be converted into lb-in2): 
 
 
 
I lb in lb inxx = − = − −8 95 0 0231552 2. . sec  
 
 
I lb in lb inzz = − = − −2 40 0 0062162 2. . sec  

A arcTAN
P

I I
zx

zz xx
=

−
05

2
.

( )

Figure 31 – Angle of 
Inclination 
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Then, using the formula: 

A arcTAN
P

I I
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The previous example was for a single plane.  This would also be the angle of inclination 
for the object if the product of inertia of the Z-Y plane were zero.  If there were a product 
of inertia for the Z-Y plane, then the combined solution for the object would be: 
 

A arcTAN
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I I
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zz rr
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05
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( )
 

 
where Pzr is the resultant of Pzx and Pzy. 
 
Irr is the moment of inertia about axis "r" (resultant) 
 
For a typical projectile or reentry vehicle, Iyy = Ixx, so that Ixx can be used in place of 

Irr.  For a vehicle with wings, this is not the case, and Irr must be calculated from the 

values of Iyy and Ixx.  (See section on moment of inertia.) 
 
 
Controlling Tilt Angle 
Since the amount of axis tilt which results from a given product of inertia is a function of 
the difference between Izz and Ixx, the effect of a product unbalance can be adjusted by 
altering the difference in moment of inertia.  This leads to two conclusions: 
 
1.  If you want to stabilize the vehicle and have it resistant to the effects of product 
unbalance, make the difference in moment of inertia as large as possible.  This is 
accomplished by designing the vehicle to be long and slender, and by placing the heavy 
items near the ends of the vehicle. 
 
2.  If you want to steer the vehicle with as little correction force as possible, then make 
the moment of inertia difference as small as can be tolerated.  The minimum moment of 
inertia difference will be limited by the skill with which you can correct product of inertia 
unbalance (a function of the sensitivity of the balancing machine used, and the stability of 
the components in the vehicle). 
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Unbalance of Rotating Objects 
 
Unbalance Forces Due to Offset CG of Rotating Object 
If a rotating object is mounted on bearings, then CG offset from the axis of rotation will 
produce a sinusoidal force on the bearings.  This unbalance force will cause premature 
wear of the bearings, noise, additional friction, and may lead to errors if the rotating 
object is part of a guidance system. 
 
The force exerted by a CG offset is a function of rotation speed and the magnitude of 
unbalance moment: 
F M r w= 2  
 
where F = unbalance force in pounds 
  M = mass in slugs = W/g 
  r = CG offset in feet 
  w = angular velocity in radians per second 
 
 If we examine the force exerted on a bearing system along a single radial axis, it varies 
sinusoidally: 
 
F Mrw a= 2 sin  
 
where a = angle of rotation relative to the axis 
 
Since a rotating system usually has two bearings, the force on each bearing would be a 
proportion of the total force (if the CG were equidistant from both bearings, then half the 
force would be applied to each bearing). 
 
This analysis assumes that the product of inertia is zero.  Such would be the case if the 
object were a thin flywheel, or if the object were dynamically balanced and a single 
weight was then added in a plane perpendicular to the axis of rotation and passing 
through the center of gravity of the object. If the product of inertia is not zero, then the 
forces on the bearings will be different from this example.  The following section 
describes the forces due to product of inertia unbalance ("couple unbalance").  
 
Unbalance Forces Due to POI of Rotating Object 
For a CG offset, the forces on the bearings do not depend on the spacing between the 
bearings but do depend on the axial location of the CG of the rotor.  If the rotor CG is 
located between the bearings, then the unbalance force is in the same direction for both 
upper and lower bearings; but the magnitude of the force is proportional to the CG 
location relative to the bearings and is, in general, different for each bearing.  In contrast, 
a product of inertia unbalance will result in equal and opposite forces on the bearings and 
the force is not a function of the CG location.  For a given POI, the magnitude of the 
bearing force will increase as the spacing between the bearings is made smaller. 
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One method of calculating the force due to product unbalance is to first determine the 
equivalent mass at the bearings that would result in the magnitude of POI.  The force on 
the bearings can then be determined using the formulas given above for CG offset. 
 
If a shaft with a Pzx of 100 lb-in2 is supported on bearings which are 10 inches apart, 
then the equivalent product of mass times distance at each bearing is 10 lb-in.  If the 
rotation speed is 300 RPM, then: 
 

300
300
60

5 5 2 31416 31416RPM rev x x rad= = = =/ sec . . / sec  

10
10

32174 12
0 0259lb in

x
slug ft− = = −

( . )
.  

F Mrw slug ft x lbs force peak= = − =2 20 0259 31416 2556. ( . ) . ( )  
 
These relationships form the basis for a spin balance machine.  An analysis of centrifugal 
forces acting against the bearings of a spin balance machine results in measured values 
for center of gravity offset and product of inertia. 
  
 
Mass vs Weight (and English vs Metric) 
 
In 1999, the Mars Climate Orbiter crashed as a result of a confusion over the system of 
units.  The software program which controlled the thrusters was supplied with thrust data 
in pound-seconds but interpreted it as if it were newton-seconds, result in an 
underestimation of the thruster impulse by a factor of 4.45.  This is only one of many 
thousands of errors that have occurred as a result of the confusion between Metric and 
English units. 
 
Many of these errors are the result of a misunderstanding regarding  the difference 
between mass and weight.  If you place an object on a scale in Europe, you will read its 
mass (generally expressed in kg).  However, if you place an object on a scale in the USA, 
you will read a value equal to the force exerted by the acceleration of gravity (generally 
expressed in lbf). Since you are really trying to use the scale to measure mass, when you 
weigh yourself on an American bathroom scale, it should read 6.22 slug rather than 200 
lbf.   
 
Traditionally, a dimensionally inconsistent correction factor is used to convert from one 
set of units to the other.  The expression 1 kg = 2.205 lb is not valid.  It is like comparing 
apples to oranges.  Mass does not equal force.  This traditional conversion factor is based 
on the value of standard gravity, which is 9.80665 m/sec2. 
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Mass is related to weight through Newton's second law:    
 

 where W = the weight of the object (gravity force) 
  M = the mass of the object 
  g = the acceleration of gravity 
 
MASS is the QUANTITY OF MATTER in an object (its inertia), while WEIGHT is the 
FORCE that presses the object down on a scale due to the acceleration of gravity.  The 
mass of an object is a fixed quantity; its weight varies as a function of the acceleration of 
gravity.  The mass properties of an object are related to mass, not weight.  Mass 
properties do not change as a space vehicle leaves the attraction of the earth and enters 
outer space. 
 
If different names are used for weight and mass, then the problem of distinguishing 
between the two is minimized.  The Metric SI system uses the word "Newton" for weight 
and the word "Kilogram" for mass.  The Newton is defined as the force required to 
accelerate a 1 Kilogram mass by 1 meter per second2.  The aerospace industry has created 
a unit of mass called the "Slug."  A one pound force is required to accelerate a one Slug 
mass at one ft/sec2.  If an object weighs 32.17405 lbf on earth, then its mass is one Slug.  
 
Unfortunately, not all systems of units adequately differentiate between mass and weight.  
In the USA, the word "pound" is commonly used for both mass and weight, resulting in 
endless confusion and errors in calculating mass properties and dynamic response. 
Officially “pound” refers to mass (see, for example, NIST documents).   However, the 
common usage of the word pound is the value you read on a scale, which is actually lbf.   
If the term "pound" is used to describe a mass whose measured weight is one pound 
(force), this quantity MUST be divided by the acceleration of gravity in appropriate units 
to convert it to proper mass dimensions if it is to be used in mass properties calculations. 
Similarly, in metric countries the terms Kilogram and Gram are often, incorrectly,  used 
to describe force as well as mass.  To avoid confusion and uncertainty, an analysis of 
fundamental dimensions will confirm if correct units of measurement are being used and 
if conversion factors are being applied correctly to achieve desired results. 
  
The various metric systems are fundamentally MASS, LENGTH, TIME systems with 
force being a defined or derived term.  The U.S. systems are fundamentally FORCE, 
LENGTH, TIME systems with mass being defined or derived.   Table One shows the 
three most commonly used systems of measurement.  Time in seconds is used throughout 
 

DIMENSIONALLY CORRECT MEASURING SYSTEMS 
 MASS  LENGTH WEIGHT  g 

SI (Metric) Kg Meter  Newton 9.80665 M/sec2 

U.S. (inch)  Weight in lbf 
386.0886 in. 

Inch  Pound (lbf) 386.0886 in/sec2 

U.S. (foot) Slug Foot  Pound  32.17405 ft/sec2 
  

W Mg=



                                                             Page 36 

The U.S. inch system has no common name for the mass whose weight equals one pound, 
although this is sometimes called a “pound mass”. One pound mass is equal to one pound 
force divided by 386.088 inches/sec2.  Applying W = Mg shows that the system is 
dimensionally consistent. 

1
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The acceleration of gravity used to convert weight to mass is a fixed number which has 
been established as an international standard. 
 

Conversion Factors 
Standard acceleration of gravity 

g = 32.17405 ft/sec2 or 9.80665 m/sec2 
 
Dimensionally inconsistent conversion factors based on standard 
acceleration of gravity 

1 oz (ounce) = 28.349 52 gram  
1 oz tr (troy ounce) = 31.103 48 gram  
1 lbf (pound force) = 0.453 592 37 kg 
1 kg = 2.204 622 6  lbf 
1 kg = 9.806 65 Newtons 
1 sh tn (short ton, US) = 907. 184 7  kg 
1 ton (long ton, UK) = 1016. 047  kg 

 
Force conversion factors 

1 dyne = 10-5 N 
1 lbf (pound-force) = 4.448  22 N 
1 kp (kilopond) = 9.806 65 N  

 
Mass conversion factors 

 1 kg = 0.068 521 76  lb mass 
 1 t (tonne, metric) = 68.521 76 lb mass 
 1 lb mass = 14.593 904 kg 
 1 t (tonne, metric) = 1000 kg 
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